Comparison of Nitrogen Oxide Metabolism among Diverse Ammonia-Oxidizing Bacteria

نویسندگان

  • Jessica A. Kozlowski
  • K. Dimitri Kits
  • Lisa Y. Stein
چکیده

Ammonia-oxidizing bacteria (AOB) have well characterized genes that encode and express nitrite reductases (NIR) and nitric oxide reductases (NOR). However, the connection between presence or absence of these and other genes for nitrogen transformations with the physiological production of nitric oxide (NO) and nitrous oxide (N2O) has not been tested across AOB isolated from various trophic states, with diverse phylogeny, and with closed genomes. It is therefore unclear if genomic content for nitrogen oxide metabolism is predictive of net N2O production. Instantaneous microrespirometry experiments were utilized to measure NO and N2O emitted by AOB during active oxidation of ammonia (NH3) or hydroxylamine (NH2OH) and through a period of anoxia. This data was used in concert with genomic content and phylogeny to assess whether taxonomic factors were predictive of nitrogen oxide metabolism. Results showed that two oligotrophic AOB strains lacking annotated NOR-encoding genes released large quantities of NO and produced N2O abiologically at the onset of anoxia following NH3-oxidation. Furthermore, high concentrations of N2O were measured during active O2-dependent NH2OH oxidation by the two oligotrophic AOB in contrast to non-oligotrophic strains that only produced N2O at the onset of anoxia. Therefore, complete nitrifier denitrification did not occur in the two oligotrophic strains, but did occur in meso- and eutrophic strains, even in Nitrosomonas communis Nm2 that lacks an annotated NIR-encoding gene. Regardless of mechanism, all AOB strains produced measureable N2O under tested conditions. This work further confirms that AOB require NOR activity to enzymatically reduce NO to N2O in the nitrifier denitrification pathway, and also that abiotic reactions play an important role in N2O formation, in oligotrophic AOB lacking NOR activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nitrifying and denitrifying pathways of methanotrophic bacteria.

Nitrous oxide, a potent greenhouse gas and ozone-depleting molecule, continues to accumulate in the atmosphere as a product of anthropogenic activities and land-use change. Nitrogen oxides are intermediates of nitrification and denitrification and are released as terminal products under conditions such as high nitrogen load and low oxygen tension among other factors. The rapid completion and pu...

متن کامل

Role of nitrogen oxides in the metabolism of ammonia-oxidizing bacteria.

Ammonia-oxidizing bacteria (AOB) can use oxygen and nitrite as electron acceptors. Nitrite reduction by Nitrosomonas is observed under three conditions: (i) hydrogen-dependent denitrification, (ii) anoxic ammonia oxidation with nitrogen dioxide (NO(2)) and (iii) NO(x)-induced aerobic ammonia oxidation. NO(x) molecules play an important role in the conversion of ammonia and nitrite by AOB. Absen...

متن کامل

The Role of Methane- and Ammonia-Oxidizing Bacteria in the Emission of Greenhouse Gases from Agricultural Soils

Nitrous oxide production from N-impacted soils is highly influenced by rates of inorganic nitrogen metabolized by the soil microbial community. The processes of nitrification and denitrification convert soil nitrite into nitrous oxide either directly or via nitrate. Although methane-oxidizing bacteria (MOB) are predominantly involved in converting methane to carbon dioxide, their evolutionary l...

متن کامل

Heterotrophic nitrogen removal bacteria in piggery wastes in the Mekong Delta, Vietnam

A total of 2318 heterotrophic nitrogen removal (HNR) bacteria isolated from piggery wastes (after biogas container) were classified in four kinds of heterotrophic ammonia-oxidizing bacteria (569 isolates), nitrite-oxidizing bacteria (580 isolates), nitrate-oxidizing bacteria (600 isolates) and heterotrophic nitrifying and denitrifying bacteria (569 isolates). The virtually complete 16S rRNA gen...

متن کامل

Phylogeny of nitrite reductase (nirK) and nitric oxide reductase (norB) genes from Nitrosospira species isolated from soil.

Ammonia-oxidizing bacteria are believed to be an important source of the climatically important trace gas nitrous oxide (N(2)O). The genes for nitrite reductase (nirK) and nitric oxide reductase (norB), putatively responsible for nitrous oxide production, have been identified in several ammonia-oxidizing bacteria, but not in Nitrosospira strains that may dominate ammonia-oxidizing communities i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016